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Our background

•PhDs in software engineering

•Focusing on analyzing human behavior in 
digital environments

•Personalized web group
• http://pewe.fiit.stuba.sk
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User knowledge modeling
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User interest modeling
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Question routing in CQAs
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Deception/focus detection

•Automatically decide upon nature of 
human-computer interaction
• Filling of  web-based questionnaires

•How reliable are the answers?
• Did our user pay attention to questions?

• Did she tried to deceive us?
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User interaction analysis

•Focus beyond user interface

•Analyzing all kinds of digital footprints on the Web

•Social Web

•Adaptive Web
• Predictive Web

•We need to model our users
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Machine Learning

•Where explicit rules are not applicable

•Let a program to learn 
dependencies/connections within data

• train/test model on available data

•use model to predict/classify new data
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Machine Learning

•Supervised
•data with labels

• user logs + “deceiving” or “telling the truth” label

• task: find mapping of input to output
• classification, regression

•Unsupervised
• task: find a structure within data itself
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Supervised learning

•Describe individual observations through 
a set of features
• time spent on a task / between clicks

• average length of a visit

• number of rated items

• …

•Find such a combination of these features 
(using a learning algorithm) that would produce 
minimal error in classification/prediction
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Supervised learning – features and labels

•Which features to choose?

•How many of them?

•How many labeled observations do we need?
• Acquiring them requires human effort
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Unsupervised learning

•We do not need labelled data
• that means we can use tons of them for our model

•We are looking for an implicit structure/connections 
present within data
• cluster, groups
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Unsupervised learning

•We do not need labelled data
• that means we can use tons of them for our model

•We are looking for an implicit structure/connections 
present within data
• cluster, groups

•We can “learn” features which are suitable for 
supervised learning
• This is how humans are learning things!
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How do we know that all these are chairs?
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Low level features of an object
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Artificial Neural Networks
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GoogLeNet
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User interaction data analysis

•gaze data – which features?
• AOIs, sequences

•how to evaluate gaze data of several users?
• identify outliers - users or interaction segments
• compare/cluster interactions data

•provide efficient representation to supervised 
learning algorithms
• higher level features
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Our approach

•Stochastic generative model
• Restricted Boltzmann machine
• Input: gaze data (sliding window)
• Output: binary vector (dimension 200)

•Clustering of resulting binary vectors
• Hamming distance
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Input to the network – a heatmap
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Patterns of user interaction
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8 participants

12 most frequent 
clusters



User eXperience @ FIIT STU

UX Lab UX Class

EEG Emotiv

ECG, GSR, FSR, °C

3D depth camera

300 Hz
Tobii eye-tracking

emotion
detection

emotion
detection

3D depth camera

60 Hz
Tobii eye-tracking

20x
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UX Lab

•Observing emotions on multiple levels:
1. Sensors on the neuro-level (brain) (EEG)
2. Sensors on the physiological level

ECG, GSR, FSR, °C
3. Visually, using software

analysis of facial features
from HD and depth camera
streams

Creative Senz3D

Happy, 
Sad, 
Angry, 
Surprised,
Scared,
Disgusted
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•Run experiment with 20 participants in parallel
• stable conditions

•Computer class with technology of future
• Support of learning using personalized web-based 

educational systems

•20x PC with sensors (eye-gaze, cameras, …)
• Observing and adapting to the way how students 

work/use: keyboard, mouse, eye-gaze, emotions

UX Class

Creative Senz3D 60 Hz
Tobii eye-tracking

20x
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Observation in dynamic web applications
Specifying AOI (area-of-interest)
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Our gaze-data related projects

•Analyzing User Gaze on the Web
• which parts of a web page were really read

•Deception detection
• web-based questionnaires

•Enhancing crowdsourcing precision by taking into 
account gaze data
• which other options were considered
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Conclusions

•Unsupervised machine learning for modeling user 
interaction data (including gaze data)
• get a higher-level representation of an interaction
• build a prediction/classification on top of that
• quickly filter-out interesting data

• Infrastructure
• Detailed observations in UX lab
• Parallel experiments in UX class
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