
Spring 2014 PeWe Workshop, March 21, 2014, pp. 63–64.

Keeping Information Tags Valid and Consistent

Karol BALKO*

Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies

Ilkovičova 2, 842 16 Bratislava, Slovakia

balko.karol@gmail.com

Metadata have become inseparable part of modern system development. Metadata as

structured information describe the information resources. And so metadata are used

for describing the features of the source code in our field of research. The features of

the source code include for example the number of white characters or denomination of

the copied code.

Our research field is focused especially on the metadata used within the project

PerConIK. Within this project metadata are being denominated by the expression

information tags. Information tags are stored in the repository of information tags and

are connected to the source code through a reference to the source code. However,

these information tags can be invalidated during the modification and refactoring of the

source code as their references to source code can be invalidated or they can describe

invalid feature of the source code.

The thesis aims to create a method to control the consistency and validity of

theses information tags. Through the analysis of this problem we have proposed

possible method, which will allow us make this control. We used several ways in our

solution. In general, as well as the analysis of metadata through approaches used in

related fields of research have been analysed.

In our method we use abstraction because the source code is very specific and a

transformation of source code to the abstract syntax trees makes the method language

independent. One method, which we are trying to use is to examine the abstract syntax

trees based on their similarities. To find the similarity we use a method called robust

tree edit distance, which shows good performance in temporal and spatial complexity.

On the basis of the resulting distance against other abstract syntax trees, we are trying

to cluster these abstract syntax trees, for a faster comparison of the new source code

that come into the system.

If the evaluation proved our method, we would be able to transfer information

tags to source code which is new in system, based on the abstract syntax trees

similarity. Although we can’t claim certainty that these information tags are absolutely

* Supervisor: Karol Rástočný, Institute of Informatics and Software Engineering

64 Karol Balko: Keeping information tags valid and consistent

valid, but we can determine their similarity to the nearest cluster of abstract syntax

trees.

As clustering algorithm, we consider k-means clustering algorithm first, but the

problem is adding new abstract syntax trees without re-clustering all known abstract

syntax trees again. So in the next progress of our research, we want to use Birch

algorithm, which has a lot of advantages against k-means clustering algorithm. Like

incremental adding new abstract syntax trees.

Acknowledgement. This contribution is the partial result of the Research &

Development Operational Programme for the project Research of methods for

acquisition, analysis and personalized conveying of information and knowledge, ITMS

26240220039, co-funded by the ERDF.

References

[1] R. Koschke, R. Falke, and P. Frenzel, “Clone Detection Using Abstract Syntax

Suffix Trees,” in Reverse Engineering, 2006. WCRE’06. 13th Working

Conference on, 2006, pp. 253 – 262.

[2] M. Pawlik and N. Augsten, “RTED: A Robust Algorithm for the Tree Edit

Distance,” in The 38th International Conference on Very Large Data Bases,

2011, pp. 334–345.

[3] W. Yang, “Identifying Syntactic Differences Between Two Programs,”

vol. 21, no. JULY, pp. 739–755, 1991.

