
Activity-Based Programmer's Knowledge Model for Personalized Search in Source Code Eduard Kuric, prof. Mária Bieliková

TELL ME MORE ABOUT YOUR PROGRAMMER...

> Motivation

To support search-driven development it is not sufficient to implement a "mere" full text search over a base of source code. When a programmer reuses code he has to trust the work of external programmers that are unknown to him. **Reputation ranking** can be a plausible way to rank code results. It can be supported by using an externalized model

"If the programmer uses a method with the longer time difference

of each programmer's knowledge of a particular code.

> Goals ... calculation of ...

- programmer's know-how about used technologies
- programmer's karma based on importance of components

(2) Dispersion of the method usage by the programmer p in time t:

$$r_{T_{i},C_{j},M_{k}} = \sum_{l} \left(t_{T_{i},C_{j},M_{k},AVG} - \left(t_{T_{i},C_{j},M_{k}} \right)_{l} \right)^{2} * \left(x_{T_{i},C_{j},M_{k}} \right)_{l} \right)^{2}$$

(3) Experience with the component/technology:

59

61

62

63

64

65

66

67

68

69

60 🗭

3

5

8

9

15

16

18

19

20

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

26 (

he will probably have better experience about it than another programmer, who uses it with the shorter time difference (even though he is not currently using it)."

(1) Average time of a method usage:

 $t_{T_i,C_j,M_k,AVG} = \frac{\sum_l \left(t_{T_i,C_j,M_k} * x_{T_i,C_j,M_k} \right)_l}{\sum_l \left(x_{T_i,C_j,M_k} \right)_l}.$

Technology (library, package)			Component (class, interface)			Method (function)	
T ₁	IC _{T1}	kT ₁	C _{T1,1}	M _{T1,C1}	kС _{т1} ,1	$ \begin{aligned} M_{T1,C1,1} &= \{ (t_{111},x_{111})_1, \\ (t_{111},x_{111})_2,\ldots \} \\ M_{T1,C1,n} &= \{ (t_{11n},x_{11n})_1, \\ (t_{11n},x_{11n})_2,\ldots \} \end{aligned} $	r ₁₁₁
			C _{T1} ,2	M _{T1,C2}	kC _{T1} , ₂		* * *
				•••		••••	* * *
T_2	C _{T2}	kT ₂					
			·				

 $\sum_k r_{T_i,C_j,M_k}$

Calculation of programmer's karma based on importance of components

 I. construction of a graph of method dependencies from code of a project and calculation of PageRank score for each method
II. construction of an index which contains a list of all the methods, the number of their Logical Lines of Code, calculated PageRank score, authors with determining their degree of authorship

Calculation of the karma value: $kv_{p_j} = \sum_{i \in M_{p_j}} PRS_{M_i} * \frac{LLOC_{M_i,p_j}}{LLOC_{M_i}}$

PRS - PageRank score LLOC - Logical Lines of Code M_{pj} - a set of all the method-IDs which programmer p_j (co)authored

Reputation ranking

I. a programmer enters a query

II. an ordered list of relevant methods is retrieved based on calculating a cosine distance between programmer's query and all methods (at least one query concept occurs in each method) Calculation of the ranking score for each method candidate: $score_{M_k} = cosSim_{M_k} + d * \left(@kh_{p_A^{\wedge}}M_k + @kv_{p_B^{\wedge}}\right)$ $@kh_{p_A^{\wedge}}M_k$ - the maximal know-how score for M_k $@kv_{p_B^{\wedge}}$ - the maximal karma value for for M_k

kuric@fiit.stuba.sk bielik@fiit.stuba.sk www.fiit.stuba.sk/~kuric www.fiit.stuba.sk/~bielik

┍┷┓┙

 $\sum_{j} kC_{T_{j}}$

 $|C_{T_i}|$

 $kT_i =$