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Introduction

e \What are public data?

O registers of companies
o registers of organizations
o public procurements

o public contracts

o lists of debtors

e \What about problems with public data?
O mistypings, duplicates, disambiguities
O itis really messy



Public data (mess) example
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Field normalization

squeeze white spaces

convert to lower cases

transliterate language-specific chars (C, t, a)
extract academic degrees to separate fields
extract address parts to separate fields



String similarity for typos

e Levenshtein (edit) distance
o minimum number of edit operations needed to
transform one string into another
o John Dough <=> John Doe (3)
e N-gram similarity
o break string into n-gram sets (n can be 2, 3,4, 5, ...)
o |A intersection B| / |A union B| (jaccard similarity)
o example
m John Doe=>(_J, Jo,Joh,ohn,hn_,n D, Do,
Doe,oe ,e )
m John Dough=>(__J, Jo, Joh,ohn,hn_,n D,
_Do, Dou, oug, ugh,gh_,h )
m /7/15=51.42%



Heuristics based on relations

® €.g. occurrences in companies



Putting it all together

e machine learning
e preliminary experiment...



Preliminary experiment

e supervised machine learning
e |ogistic regression classifier



Data set

e slovak business register (foaf.sk)
detecting duplicates in people table
e 4,298 out of 569,999 records

O name
o address

e NO company relations
o companies and occurrences tables

e training and testing on all possible pairs
o 4,298 % (4,298 +1)/2 =9, 238, 551 samples

e |abel
o our baseline is current foaf.sk duplicate detection



Features

equal names

equal addresses

levenshtein distance of names
levenshtein distance of addresses
n-gram similarity of names
n-gram similarity of addresses

combination of academic degrees

o feature for every possible pair of occurring degrees
o testing compatibility of degrees

e disjunction of academic degrees
o degree occurring in one of two compared samples



Results

Feature set FP | FN | Precision | Recall | F; score
=(labels) 0 0 1 1 1

=(names), =(addresses) 142 | 13 0.8777 0.9874 | 0.9293
L(names), L(addresses) 326 | 3 0.8782 0.9923 | 0.9318
2G(names), 2G(addresses) 142 | 13 0.8777 0.9874 | 0.9293
3G(names), 3G(addresses) 142 | 13 0.8777 0.9874 | 0.9293
4G(names), 4G(addresses) 142 | 13 0.8777 0.9874 | 0.9293
5G(names), SG(addresses) 142 | 13 0.8777 0.9874 | 0.9293
6G(names), 6G(addresses) 142 | 13 0.8777 0.9874 | 0.9293
2G(names + degrees), 2G(addresses) 138 | 40 0.8779 0.9612 | 0.9177
3G(names + degrees), 3G(addresses) 138 | 46 0.8772 0.9554 | 0.9147
4G(names + degrees), 4G(addresses) 136 | 50 0.8784 0.9516 | 0.9135
5G(names + degrees), 5G(addresses) 135 | 53 0.8788 0.9486 | 09124
6G(names + degrees), 6G(addresses) 135 | 54 0.8787 0.9477 | 09119
L(names), L(addresses), degree combinations | 135 | 39 0.8803 0.9622 | 0.9194
L(names), L(addresses), degree disjunctions 135 | 23 0.882 0.9777 | 0.9274




Misclassification error

Learning curve
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Future work

e data set with our own labels (instead of foaf.
sk baseline labels)

e inclusion of relations to companies in
features (currently we use only names,
addresses and degrees)

e address normalization, distance of address
coordinates

e performance
o levenshtein automata, min-hashing
o vowpal wabbit algorithm
o sliding block comparing



Thank you :)



