Machine Learning Workflow

Ivan Srba 5th October 2017

Topics Overview

- Statistics
- Data Mining

Machine Learning

Artificial Intelligence

https://stats.stackexchange.com/questions/5026/what-is-the-difference-between-data-mining-statistics-machine-learning-and-ai

Mathematics

Programming

- Statistics is just about the numbers, and quantifying the data.
- Data Mining

Machine Learning

Artificial Intelligence

https://stats.stackexchange.com/questions/5026/what-is-the-difference-between-data-mining-statistics-machine-learning-and-ai

Programming

Mathematics

- Statistics is just about the numbers, and quantifying the data.
- **Data Mining** is about using **Statistics** as well as other programming methods to find patterns hidden in the data so that you can *explain* some phenomenon.
- Machine Learning

Artificial Intelligence

https://stats.stackexchange.com/questions/5026/what-is-the-difference-between-data-mining-statistics-machine-learning-and-ai

Programming

Mathematics

5

- Statistics is just about the numbers, and quantifying the data.
- **Data Mining** is about using **Statistics** as well as other programming methods to find patterns hidden in the data so that you can *explain* some phenomenon.
- Machine Learning uses Data Mining techniques and other learning algorithms to build models of what is happening behind some data so that it can *predict* future outcomes.
- Artificial Intelligence

Mathematics

Programming

https://stats.stackexchange.com/questions/5026/what-is-the-difference-between-data-mining-statistics-machine-learning-and-ai

- Statistics is just about the numbers, and quantifying the data.
- **Data Mining** is about using **Statistics** as well as other programming methods to find patterns hidden in the data so that you can *explain* some phenomenon.
- Machine Learning uses Data Mining techniques and other learning algorithms to build models of what is happening behind some data so that it can *predict* future outcomes.
- Artificial Intelligence uses models built by Machine Learning and other ways to *reason* about the world and give rise to intelligent *behavior* whether this is playing a game or driving a robot/car.

Programming

https://stats.stackexchange.com/questions/5026/what-is-the-difference-between-data-mining-statistics-machine-learning-and-ai

Slovak-English Domain Term Dictionary

https://docs.google.com/spreadsheets/d/1rs2EXUhhxflgJmxRRa1Bjj6y9XVorTHjjCVTSxpaOQ/edit?usp=sharing

Link also available at pewe.sk > Datalys > Resources

ML Workflow: Overview

ML Workflow: Problem Definition

- Clearly identify your problem you are trying to solve
 - Informal description
 - As you would explain it to your friends
 - State your motivation to solve the problem
 - Formal description
 - As machine learning task
 - Hypothesis in your thesis
- Identify constraints imposed on required dataset
- Explore possible manual solutions
 - If they do not exist, it is not a problem any more (in many cases)

ML Workflow: Data Integration

- Some ML task can be solved only when you integrate data from several sources
- Different sources = different structure and format
 - Data consolidation is required
- Entity mapping
 - User IDs (email, DB ID, cookie, username, ...)
 - Item IDs (code, name, ...)

ML Workflow: Descriptive Statistics

- Known your data!
 - Otherwise, you are just guessing...
- Summarize data
 - Volume of data (attributes, instances)
 - Data types
 - Distribution of data
 - Relations in data
- Visualize data
 - Histograms, boxplots, scatterplots
- Result of descriptive statistics is an important input to all consequent steps

ML Workflow: Data Preprocessing

- Have large data? Do sampling!
 - Less data result in shorter training times
 - You can still finally run the model on larger portion of data
- Machine learning requires wellprepared data
 - Detect outliers
 - Replace missing values

"

Coming up with features is difficult, timeconsuming, requires expert knowledge. *Applied machine learning* is basically feature engineering.

"

Andrew Ng

Feature Engineering

ML Workflow: Feature extraction

- Raw data need to be converted to features
 - Images, text, logs, ...
- High-dimensional data need to be reduced
- Techniques
 - Expert-based (UM, NLP)
 - Automatized
 - Dimensionality-reduction (PCA)
 - ...

ML Workflow: Feature transformation

- Some ML algorithms work well when features have specific
 - Distribution
 - Range
 - Data type
- Techniques
 - Scaling
 - Normalization
 - Encoding categorical features
 - Binarization of features

ML Workflow: Feature transformation

- Some features may not be suitable to be used directly by ML algorithm
- Techniques
 - Combining features
 - Splitting features (e.g. date)
 - Polynomial features

ML Workflow: Feature selection

- Feature construction can lead to huge number of features
- Techniques
 - Filter methods
 - Wrapper methods
 - Embedded methods

ML Workflow: Model Training and Evaluation

- Explicitly state your methodology for training and evaluation
 - Select and define metrics suitable for your ML task
 - Distinguish training, testing and validating sets
 - Use cross-validation if necessary
- Always do hyperparameter tuning
 - Never rely on default algorithm parameters
 - Grid-search, random-search, ...
- Select best model according to your stated problem/goal

ML Workflow: Results Presentation

- Visualize and compare results
 - Jupiter Notebooks (Python, R, ...)
- Always admit limitations of your methods
- Best results are 100% reproducible
 - Publish your dataset and algorithm (e.g. Github + Jupiter Notebook)
- If applicable, deploy the algorithm online, measure its performance and continue improving
 - Or describe typical use cases

ML Workflow: Typical Problems

- Curse of dimensionality
 - Dimensionality reduction, ...
- Overfitting
 - Regularization parameters, pruning decision trees, ...
- Imbalanced datasets
 - Under-sampling, over-sampling, different weights
- Concept drift

ML Workflow: Discussion

- Not all steps are necessary
 - Descriptive statistics and model evaluation will show you your way
- Never do waterfall
 - Iteratively improve your features and model
 - Incrementally try new features and algorithms
- Feature engineering is a real art and mastery of applied ML

We will discuss particular techniques and details about ML problems during next seminars...

 https://machinelearningmastery.com/4-steps-to-get-started-in-machinelearning/