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Warming-up

» Everything said last week applies perfectly also in case of all theses in
data science domain

e Summary of gold rules
 Search for sources (research articles), organize them by dedicated tools
* Analyze the existing solutions, write notes, compare them
» Select few most related articles, describe them in very details
* Pay a strong attention to summary/discussion at the end of analyses’ section
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Data-science specific questions...

* ... you need to answer before starting work on solution proposal and
implementation:
* How to define data-science (machine learning, ...) task?
How to select/create appropriate dataset?
How to describe your dataset?
How to preprocess your dataset?
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Step 1: Problem Definition

* Clearly identify your problem you Problem (In)formal Gonstrami Manual
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are trying to solve

» Informal description

» As you would explain it to your
friends
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DT DED,

» Refer back to motivation stated in
analyses’ summary/discussion

» Formal description
» As a research question

» As a hypothesis

* As a machine learning task

 |dentify constraints imposed on
required dataset

» Explore possible manual solutions

 |f they do not exist, it is not a
problem any more (in many cases)

o




Step 2: Data Gathering

 Data access

» Prepared datasets, crawling,
API
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Step 2: Data Integration

o Data access Problem (In)formal icrgggtsrea(}'not; Manual

Definition description Aits solution

» Prepared datasets, crawling,
API Data

» Legal issues

Data
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e Data integration
« Some ML task can be solved

only when you integrate data >

from several sources

» Different sources = different structure
and format

 Data consolidation
» Entity mapping

» User IDs (email, DB ID, cookie,
username, ...)
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» Item IDs (code, name, ...)
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Step 3: Descriptive Statistics

 Known your data! Problem (In)formal Qonstradints Manual
. 7 . Definition description lmpgsﬁa e solution
» Otherwise, you are just guessing...
Data Data
. . Data access : :
« Summarize data RIS )
« Volume of data (attributes, instances)
» Data types DSetiaCtri]se;ﬂj\;e Sstjg;?acr;l Distribution Correlation
« Distribution of data

« Relations in data > >> >> >> >
Visualize data

» Histograms, boxplots, scatterplots > >> >> >> >
Result of descriptive statistics is
an important input to all > >> >> >> >
consequent steps >




Step 4: Data Preprocessing
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Step 4: Data Preprocessing

* Have large data? Do sampling! Problem (Injformal Comstraints Manual
7 7 Definition description lmp((j);?a o solution
» Less data result in shorter training
times
 You can still finally run the model on GatD[?;?ing Data access inteZ$giion
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* Machine learning requires well- ST summary
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Sources

» https://machinelearningmastery.com/4-steps-to-get-started-in-machine-
learning/



