
Generating Headlines with Text Summarization

Overview	
Exploring usage of deep learning in text processing field	> We
Idea based on adapting sequential translation and	> En
summarization approaches	rel
By using baseline summarization on raw text we can	> We
compress information to construct fitting headlines	an
We evaluate our approach on datasets of Slovak and English	> Tra
Wikipedia articles and annotated documents	im
	SUG

Sequence to Sequence Translation

- > Popular solution for machine translation between two languages, because it doesn't map individual words between the domains, but rather sequences; preserves context, recognizes multiword phrases and the sequences may be different in length
- > Words of both spaces are represented by initially random embeddings—using distributed representation of words
- > Utilizing pre-trained model of distributed representation, we can further accelerate the training of sequential translation
- > The model consists of:
- > **Encoder**: which accepts the document's word embeddings in reversed order as they are positioned in sentences
- > **Decoder**: which generates the expected headline's embeddings in correct order, ending with a stopping symbol. Each single generated word is further propagated during headline generation
- > The model can output words, which are not included in input text simulating **abstractive** summarization

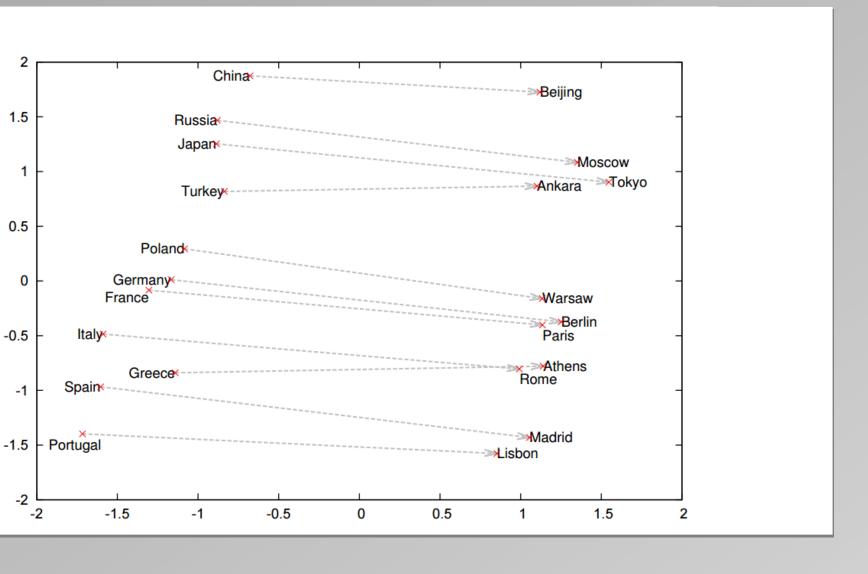
Bc. Dalibor Mészáros, supervisor: Dr. Márius Šajgalík

Distributed Representation of Words

- e represent words as **vectors** rather than dictionary indices
- coding the word's **positions** in vector space exposes
- lationships with other words
- e can compute such model using existing texts
- d learn the words **meaning** and **context** usage
- aining such model independently is relatively simple and further
- proves the cold start training of other dependent models
- ch as **sequence translation models**

1.5

0.5


-0.5

 \succ The model has high memory

requirements

> The model often yields **interesting** and **unexpected** outputs

Expected: An indoor navigation system for visually impaired and elderly people based on Radio Frq. **Predicted:** Autonomous navigation system with multiple level data **Expected:** A Query Construction Service for Large Scale Web Search Engines **Predicted:** User behavior for personalized web **Expected:** Content based image retrieval system using NOHIS tree **Predicted:** Improving image quality based on cluster information Expected: Mužská štvorhra na WCT Predicted: Mužská štvorhra na Heineken Expected: 1 slovenská národná futbalová Predicted: 1 slovenská hokejová liga

Results

> The model has it's own limitations as the **ratio** of input, output sequence and the **length** of sequences highly affects the **quality** of generated headlines.

Metrics	Wikipedia SK	Annotated documents
Length of input	50	150
Length of output	5	20
Loss	2.7255	4.1221
Bleu 1-gram	73.91%	40.83%
Bleu 4-gram	30.08%	11.23%
Bleu-10 gram	-	02.34%
Meaningful words	44.75%	38.26%
Perfect prediction	21.09%	00.00%