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Text representation

How to represent our text data so the neural networks understand them



How can we represent text?

 Words

« Each word is an indivisible symbol.
 Text is a sequence of such symbols.



How can we represent text?

 Words

* Sub-words
« With words alone we lose morphological information.

« Sub-words (characters or N-gram of characters) can be symbols
Instead.

 Not suitable for logographic languages.



How can we represent text?

 Words
« Sub-words

* Feature engineering
 Hand-crafted features extracted from the text.

 E.g. number of elongated words (cool > cooool) is a good predictor of
strong sentiment.



Word level representation

 Word is the smallest element that can be uttered in isolation
with objective or practical meaning. (wikipedia]

« Words are symbols, we do not care about their form.
« We need numerical representation for this phenomenon.

* Idea: Assigh a number to each word and use this number as
the word representation.



Vocabulary building



What is our task

Input: Raw data corpus

Lorem ipsum dolor sit amet. Ipsum
consectetur adipiscing elit.

Output: Vocabulary

1:

O O NOULTLE, WN

lorem
ipsum

: dolor

sit

. amet

: consectetur
: adipiscing
. elit



1. Tokenization

* NLP task: split text into individual tokens.
« str.split is not enough — punctuation, scriptio continua

[ met my co-worker.
{ met my co-worker.

1 met my co - worker

[ met my co-worker



1. Tokenization

* NLP task: split text into individual tokens.
« str.split is not enough — punctuation, scriptio continua

don t
dont
do not
don ‘t



1. Tokenization

* NLP task: split text into individual tokens.
« str.split is not enough — punctuation, scriptio continua

* If possible use off-the-shelf tokenizer.
* nltk punkt available for 17 languages.



2. Word post-processing

Letter case

Common token for numbers @NUMBER

Common token for URLs, emalil addresses, etc. @URL
Common token for emojis with the same emotion

RGO

We met 5 days ago :-)
we met @NUMBER day ago ©



3. Word filtering

« Zipf's law can be observed on word frequencies.
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3. Word filtering

« Zipf's law can be observed on word frequencies.

« We often limit the number of words we have in our vocabulary
to fixed number or frequency.

* Model can't learn much about rare words — overfitting.
* More words = more memory.



3. Word filtering
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4. Final word representations

Vocabulary
1:
2: ipsum
3: lorem
4. sit
5: amet
6: @O0V

Text processing

Lorem ipsum dolor sit amet. Ipsum
consectetur adipiscing elit.

lorem ipsum @OOV sit amet .
ipsum @O0V @OOV @O0V .

32645126661



One-hot encoding

* Formally words are categorical data now.
* One-hot encoding Is proper representation in such cases.
* For word n we have vector with size V where n-th unit is one.

word 2 [0, 1, 0, 0, 0]
word V — 1 [0, 0, 0, 1, 0]



Bag of words

« Sum of word representations.
« For sequence1l 3 1 with V =5:

word 1 1 0 0 0 0
word 3 0 0 1 0 0
word 1 1 0 0 0 0
BoW 2 0 1 0 0

 This is TF (term frequency) representation.
 Binary and TF-IDF representations are related.



Fixed length sequence

« Concatenation of word representations
« For sequence1l 3 1 with V =5:

word 3 word 1
0 0 1 0 0 1 0 0 0 0

word 1
1 0 0 0 0

« Qutputis V x K, with K being the fixed length, here K = 3



Sequence

* List of word representations
« For sequence1l 3 1 with V =5:

word 1 1 0 0 0 0
word 3 0
word 1 1 0 0 0 0



Fixed Sequence
Preserve word order No Yes Yes
Unlimited text length Yes No Yes
Fixed representation length Yes Yes No
Computation time increases NG NG Ves

with longer sentence




What representation should you use?

Fixed
- never
BoW

- when you don't care about word order (e.g. document
classification)

- when you don't have much data

- when you don't care about performance hit if you can have
smaller, simpler, quicker model

Sequence
- otherwise



Embedding layer

Common first operation with one-hot representation x is called
embedding:

e = Wx
e is In fact n-th column of embedding matrix W for word n.
[12332[1] [1232:2]
4 5 6 0 4 4 5 6 0 5




Embedding layer

* e Is also called the embedding of word n.
* It is the model's internal representation for this particular word.
« W has size h x V, his arbitrarily set (hundreds).
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Arbitrary sequence processing model
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Embedding learning

During back-propagation we calculate how much do individual
weights contribute to error and change them accordingly:

aC aC

aWj,k B aka_Zj —’ :




Embedding learning

During back-propagation we calculate how much do individual
weights contribute to error and change them accordingly:

aC aC
= X
ow; . “oe;

oC |
L '\‘
_ ae,- if n

aWj,k
0 otherwise




Why are we calculating the word
embeddings all over again?

We should reuse trained embeddings for other tasks.
[Collobert & Weston, 2008]

Benefits:

* Faster training

« More robust word representations
 Better performance



Pre-trained word embeddings



What i1s a good auxiliary task?

« We need something general that is able to capture various
types of information — semantic, syntactic.

* We need a task with an abundance of data.

« We need something we are able to train. Bonus points if we are
able to do 1t quickly.

Language Modeling



Language Modeling

« Traditional linguistic task — First attempts in early 20" century.

« We want to model the probabilities of words following each
other.

WiWoW3 Wy Ws ... ?

« We calculate probability for each word in our vocabulary.
* Basically guessing the next word.



Language Modeling

We use context to predict the missing word(s).

W1 Wy Wa W We W
Wi Wy W3 W, We W
W1 Wo W3 Wy Wes W
Wi Wy W3 Wy WeWe



i-th output = P(w, = i |context)
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word2vec



word2vec

* Open source library published by Tomas Mikolov in 2013.
« Two conference papers published alongside [mikolov et al, 2013a, 2013b].
» Single use case: compute word embeddings.

Why it got so popular?
1. Really fast training (hours instead of weeks).
2. Good results (used in practice to these days).



Task definition

 Take arbitrary corpus and for each word check its context:
abcdefgabcdefef

* Create training samples (w;, w, - training word, context word):
d) €, -FJ d, b, C

 Train a model that is able to predict w, from w;



Architecture

e=Ux
y = softmax(Ve)

2.5 0.67
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X e y' y

Probabilities for each word
appearing next to word 2.



Training

During training we want to maximize the probability for sample
context words:

=~ % P (we|we)

But calculating the softmax is really expensive ®



Training efficiency

* Negative sampling
« Instead of calculating the probability for each word, we calculate it for
w, and a handful of other words

« We are happy if w, has higkber probability than k random words

1080 ) + ) Euy-ryonlloga(=y'0)]
=1
 Frequent words subsampling

« We can make it even faster if we don't calculate this for frequent
words millions of times.



After training

« We can predict w,. really good, but this is in practice not useful
at all.

« But, we have a matrix U trained and every column there is
a really good word representation for one word.

* In fact, similar representations are also in matrix V — we can
use whatever, or their average.
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Similar words are clustered

» body part

travel:- = ¥
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s7 relative
2 [Olah, 2015]



Differences are semantically meaningful

WOMAN

MAN ,/”;7
UNCLE
QUEEN

KING

AUNT

QUEENS

KINGS \
\ QUEEN

KING

[Mikolov et al, 2013c]



word2vec demo

http://bionlp-www.utu.fi/wv_demo/




Historical linguistics

a . 9ay (1900s)

sweet

flaunting ﬁ (o
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tasteful
pleasant
frolicson\e
witty Y gay (1950s)
bright

gays fisexual

i sl ¢
gay (1990s) homosexual

lesbhian

b
spread
broadcast (1850s). O‘?g;J
- SOWS
circulated scatter
broadcast (1900s)
NEWSpapers

television
radio
hhc broadcast (1990s)

C solemn
awful (1850s)

majestic

awe
dread ensive
gloomy

horrible

appalliwg terrible
awful (1900s) wonderful
awful (1990s)

weird
awfully

[Hamilton et al, 2016]



Sociolinguistics

Secr.etary

o

Housekeeper

1SN
8

Women Occupation Proportion

e Carpenter

—b —0.10 —0.05 0.00 0.05 0.10

Women Bias
[Garg et al, 2017]



Averaging embeddings for documents

« We can create sentence / paragraph / document
representations with pooling operations.

 Equal to using W on BoW representation.
« Deep averaging networks [iyyer et al, 2015]



Embedding properties

 They are trained using a very rudimentary training objective.

* Yet they seemingly capture a lot of semantic information about
words.

 Back to the start: They are used to initialize embedding
matrices in NLP models and empirically they significantly
Improve results.

* New insight: They can be used as off-the-shelf word
representations whenever we need.



Why does it work so well?

« VU I1s approximating co-occurrence matrix.

« Embeddings are “compressions” of columns
/ rows

* Intuitive interpretation: words that are used
In similar context are semantically similar
(cat, dog — fur, pet, etc.)

« Harris' distributional hypothesis
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GloVe

[Pennington et al, 2014]
 Quite popular alternative to word2vec.

« Conceptually very similar, slightly different math.



fastText

[Bojanowski et al, 2017]
« Each word is an indivisible symbol?

« krasny, krasna, krajsi, najkrajsim, ...
- fastText i1s a word2vec extension working with sub-words.



fastText

« krasny - <krasny>, <kr, kra, ras, asn, sny, ny>
« We add all N-gram to our vocabulary.
* Input word representation is then multi-hot.

<abc> | <bca> <a ab bc c> <b ca a>

abc 1 0 1 1 1 1 0 0 0

bca 0 1 0 0 1 0 1 1 1




fastText

« krasny - <krasny>, <kr, kra, ras, asn, sny, ny>
« We add all N-gram to our vocabulary.

* Input word representation is then multi-hot.
* There Is an interaction between words now.

<abc> | <bca> | <a ab bc c> <b ca a>
abc 1 0 1 1 1 1 0 0 0
bca 0 1 0 0 1 0 1 1 1
bc 0 0 0 0 1 1 1 0 0




And many others...

* Multilingual

« Sparse

« Compressed

» Paragraph embeddings

« Word sense sensitive

 Task specific embeddings

« Embeddings trained on non-LM tasks



What embedding model to use?

« fastText (available for 157 languages).
« word2vec is okay for morphologically simple languages.



How to use them in your model?

emb = tf.nn.embedding lookup(pretrained emb, word ids)



Use existing or train your own?

« If you don't care about performance that much, use existing.

* If you care about performance, but you don't have much data,
use existing.

« If you care about performance, and you have data, train your
own.

« If you have a lot of data you might not even need pre-trained
embeddings.



Should the embedding layer be fixed
during training?

« Embedding matrix W is a weight matrix like any other.
« If we don't have much data — keep it fixed.
« Otherwise — you can train it.

e If we train it with small dataset we can observe a semantic
shift.

« Words that are not in training set don't move while other words
do.



How to deal with O0OVs?

 Pre-trained embeddings restrict vocabulary.
« Always check the words that are not found in embeddings.

« If you train your W you can randomly initialize new embeddings
words that don't have embeddings.

« @O0V token is assigned its own embedding (zero vector,
random vector, token similarity heuristic).

« fastText can create OOV embeddings on the fly.



Further Reading

* Deep Learning, NLP, and Representations — C. Olah [olah, 2015]

» Visualizing Representations — C. Olah

» Word Embeddings in 2017: Trends and future directions — S.
Ruder

« On Word Embeddings — S. Ruder




Advanced topics



Can we pre-train more?

* In computer vision multiple layers are pre-trained as a model
Initialization.
 Transfer learning was successfully applied in NLP.

 Using state-of-the-art language models instead of simple word
embeddings seems to be a trend: BERT, ELMo, ULMFIT, etc.

* For try-hards only.



What about sub-words?

« Sub-words are a part of fastText.

 We can use them to:

« model words (or even combine them with word embeddings)
« model the entire text (Google Translate does this)

« Empirically improve performance, but they are computationally
more demanding than word embeddings.
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